A new species of *Tetranychus* Dufour, 1832 (Acari, Trombidiformes: Tetranychidae) from Iran

SAYED MOSAYEB MAHDAVI¹, MAHDIEH ASADI¹, 4, EDWARD A. UECKERMANN²,³ & SADEGH FARZAN¹

¹Department of Plant Protection, College of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran; Emails: mahdavi.mosayeb@yahoo.com, asadi.mahd@yahoo.com, farzan.sadegh@gmail.com
²ARC-Plant Protection Research Institute, Private Bag X134, Queenswood, Pretoria, 0121 South Africa; Email: UeckermannE@arc.agric.za
³School of Environmental Sciences and Development, North-West University, Potchefstroom Campus 2520, South Africa.
4 Corresponding author

Abstract

Tetranychus iraniensis Mahdavi & Ueckermann **sp. nov.** (Tetranychidae) is described from *Salsola* sp. (Amaranthaceae) in Manujan-Kerman. This species belongs to the group one of *Tetranychus* by Flechtman and Knihinicki’s grouping. The new species is different from the other species in the group in having a peculiar shape of the aedeagus.

Key words: Prostigmata, taxonomy, fauna, Kerman, Iran

Introduction

Spider mites (Acari: Tetranychidae) are of agricultural importance as pests of various crops. Many members have genetically developed resistance against pesticides in a short time span. The costs incurred from crop losses and control strategies are measured in millions of dollars (Seeman & Beard, 2011). A total of about 140 species belong to the world-wide *Tetranychus* genus (Bolland *et al.* 1998; Ehara *et al.* 2008). Seven species of this genus are recorded from Iran (Kamali *et al.* 2001). We describe one more new species and increase the number to eight. A key to the known Iranian species is provided.

Material and methods

Mite infested leaves and twigs were collected, placed into plastic bags and transferred to the laboratory. Samples were washed in a solution of water and commercial detergent. This solution was filtered through a sieve (400 Mesh). Mites retained on the sieve were washed with 70% ethanol into a petri dish. Mites were collected under a stereomicroscope, cleared with lactic acid (at 45°C) and mounted in Hoyer’s medium. Mites were examined under an Olympus phase-contrast compound microscope. Measurements were done by means of a Dino-Eye® soft imaging system and are given in micrometers (µm). The drawings were made using a drawing tube attached to an Olympus® Research Microscope. Figures were cleaned and edited with Corel draw x5 2010 and Photoshop CS5, respectively.