Systematic & Applied Acarology 19(4): 491–498 (2014) http://dx.doi.org/10.11158/saa.19.4.12

http://zoobank.org/urn:lsid:zoobank.org:pub:BDBE03C0-482D-44C4-8444-2B0C67C927B4

Genetic diversity and differentiation of *Lepidoglyphus destructor* (Acari: Glycyphagidae) inferred from inter-simple sequence repeat (ISSR) fingerprinting

MENG-KAI GE¹, EN-TAO SUN^{1*}, CHAO-NAN JIA¹, DE-DI KONG¹ & YU-XIN JIANG^{2*}

¹ Department of Medical Parasitology, Wannan Medical College, Wuhu 241002, China

² Department of Physiology, School of Basic Medicine, Wannan Medical College, Wuhu 241002, China

* For correspondence: asdentao@126.com, jiangyuxin2000@hotmail.com

Abstract

Article

Lepidoglyphus destructor (Schrank) is a prominent and world-wide pest of stored grain. Currently, genetic diversity of *L. destructor* is still little known due to the limited number of studies. The objective of this investigation was to assess genetic diversity and differentiation of four populations of *L. destructor* from four geographic locations in China using inter-simple sequence repeat (ISSR) fingerprinting. A total of 58 DNA bands were tested, 47 of which were polymorphic and the percentage of polymorphic bands (*PPB*) was 81.03%. Nei's gene diversity (*He*) and Shannon's Information index (*I*) revealed that the genetic diversity was high. Further, the value of *Gst* was 0.5680, indicating a median level of genetic differentiation in these populations. At the same time, analysis of molecular variation (AMOVA) showed that 45.93% of variation can be identified within populations. The level of gene flow (*Nm*) was moderate. Cluster analysis suggested that genotypes isolated from the same locations displayed a higher genetic similarity than those from different ones, forming a specific clade according to their geographic locations. Nevertheless, there was no significant correlation between the genetic distance and geographic distance.

Key words: *Lepidoglyphus destructor*; genetic diversity; genetic differentiation; geographic distribution; ISSR fingerprinting

Introduction

Storage mites are economically important pests, which frequently occur in stored grain, seed, cerealbased and other food and feed stored commodities mainly in areas with humid climates (Thind & Clarke 2001; Zhang 2003; Athanassiou *et al.* 2005; Palyvos *et al.* 2008). These mites negatively influence the quality of stored commodities, which are also one of the most important agents of allergic reactions. In particular, *Lepidoglyphus destructor* (Schrank 1781), is a common species of storage mite in stored grain (Leskinen and Klen 1986; Fernández-Caldas 1997; Mehl 1998; Athanassiou *et al.* 2001). It is becoming an important environmental allergen and occupational exposure, being responsible for contact allergies associated with farmers, bakers, and grain workers (Marx *et al.* 1993; Tee *et al.* 1992; Armentia *et al.* 1997). It is time to develop an effective management strategy of the prevention and control for *L. destructor*. The mites are wingless and usually rely on crawling for their dispersal, but they may also be carried for long distance by human activities. The complex dispersal mechanisms of *L. destructor* rendered the complex genetic diversity and differentiation among populations. However, it must be taken into account when aiming for pest management (Sabine *et al.* 2007). As a consequence, reliable estimate of genetic diversity and differentiation of *L. destructor* isolates are crucial to decision-making in pest